当前位置:首页 >> 解决方案
____________________________________________________________________________
光催化反应器应用案例:可见光降解POPs
随着环境污染问题的日益严重,持久性有机污染物(POPs)的治理成为了环境科学领域的研究热点。光催化技术作为一种高效、环保的污染治理手段,受到了广泛关注。其中,表面等离子体共振(SPR)效应在光催化降解POPs中发挥了重要作用。本文将深入探讨SPR效应、可见光降解、光催化技术及其相关方法,并阐述其在POPs治理中的应用。
In recent years, as environmental pollution problems have become increasingly serious, the treatment of persistent organic pollutants (POPs) has become a research hotspot in the field of environmental science. Photocatalytic technology has received widespread attention as an efficient and environmentally friendly means of pollution control. Among them, the surface plasmon resonance (SPR) effect plays an important role in the photocatalytic degradation of POPs. This article will deeply explore the SPR effect, visible light degradation, photocatalytic technology and related methods, and explain its application in POPs control.
SPR效应是一种物理现象,指当入射光以一定角度照射到金属纳米颗粒上时,金属表面的自由电子发生集体振荡,从而产生强烈的局域电磁场。这种电磁场能够显著增强光与物质的相互作用,提高光催化反应的效率。在光催化降解POPs的过程中,利用SPR效应可以有效地拓宽光响应范围,提高光催化剂的催化活性。
The SPR effect is a physical phenomenon that means that when incident light strikes metal nanoparticles at a certain angle, the free electrons on the metal surface collectively oscillate, thereby generating a strong local electromagnetic field. This electromagnetic field can significantly enhance the interaction between light and matter and improve the efficiency of photocatalytic reactions. In the process of photocatalytic degradation of POPs, the use of the SPR effect can effectively broaden the photo response range and improve the catalytic activity of the photocatalyst.
光催化技术利用光催化剂在光照条件下产生的光生电子和空穴,与污染物发生氧化还原反应,从而将其降解为无害物质。在可见光降解POPs的过程中,光催化剂的选择至关重要。具有SPR效应的金属纳米颗粒(如Au、Ag等)因其优异的光学性质和催化性能,成为了光催化领域的研究热点。
Photocatalytic technology uses photogenerated electrons and holes generated by photocatalysts under light conditions to undergo oxidation-reduction reactions with pollutants, thereby degrading them into harmless substances. In the process of visible light degradation of POPs, the choice of photocatalyst is crucial. Metal nanoparticles (such as Au, Ag, etc.) with SPR effect have become a research hotspot in the field of photocatalysis due to their excellent optical properties and catalytic performance.
拓扑变相法是一种通过调控晶体结构来优化材料性能的方法。在光催化剂的制备过程中,拓扑变相法可以有效地调节催化剂的能带结构和表面性质,从而提高其光催化活性。空氛烧结法则是一种在特定气氛下对材料进行高温处理的方法,通过控制烧结过程中的气氛和温度,可以制备出具有优异性能的光催化剂。
The topological phase transformation method is a method to optimize material properties by regulating crystal structure. In the preparation process of photocatalysts, the topological phase change method can effectively adjust the energy band structure and surface properties of the catalyst, thereby improving its photocatalytic activity. The air atmosphere sintering method is a method of high-temperature treatment of materials under a specific atmosphere. By controlling the atmosphere and temperature during the sintering process, photocatalysts with excellent performance can be prepared.
结合拓扑变相法和空氛烧结法,可以制备出具有高效光催化活性的纳米材料。例如,通过调控TiO2的晶体结构,可以获得具有锐钛矿型结构的TiO2纳米颗粒。这种材料具有优异的光学性能和催化活性,能够在可见光照射下有效降解POPs。
Combining the topological phase change method and the air atmosphere sintering method, nanomaterials with efficient photocatalytic activity can be prepared. For example, by regulating the crystal structure of TiO2, TiO2 nanoparticles with anatase structure can be obtained. This material has excellent optical properties and catalytic activity and can effectively degrade POPs under visible light irradiation.
纳米空盒光反应器是一种新型的光催化反应装置,其独特的纳米结构能够显著增强光与催化剂的相互作用。通过将具有SPR效应的金属纳米颗粒嵌入到纳米空盒中,可以实现光催化剂的高效利用。在光照条件下,金属纳米颗粒产生SPR效应,激发产生光生电子和空穴,进而引发POPs的降解反应。
Nano empty box photoreactor is a new type of photocatalytic reaction device. Its unique nanostructure can significantly enhance the interaction between light and catalyst. By embedding metal nanoparticles with SPR effect into nano empty boxes, efficient utilization of photocatalysts can be achieved. Under light conditions, metal nanoparticles produce the SPR effect, which stimulates the generation of photogenerated electrons and holes, thereby triggering the degradation reaction of POPs.
离子体共振效应在纳米空盒光反应器中发挥了关键作用。通过调控金属纳米颗粒的形貌和尺寸,可以优化其SPR效应,从而提高光催化反应的速率和效率。此外,纳米空盒的结构还可以有效地防止光催化剂的团聚和失活,提高催化剂的稳定性和循环利用性。
The ion resonance effect plays a key role in nano empty box photoreactors. By controlling the morphology and size of metal nanoparticles, their SPR effect can be optimized, thereby improving the rate and efficiency of photocatalytic reactions. In addition, the structure of the nano-empty box can also effectively prevent the agglomeration and deactivation of the photocatalyst, and improve the stability and recycling of the catalyst.
催化活性是衡量光催化剂性能的重要指标之一。在光催化降解POPs的过程中,催化活性受到多种因素的影响,包括催化剂的晶体结构、表面性质、光照条件等。肖特基势垒是描述电子在金属与半导体界面传输过程中的能量障碍的概念。通过调控肖特基势垒的高度和宽度,可以优化光生电子和空穴的分离与传输效率,从而提高光催化剂的催化活性。
Catalytic activity is one of the important indicators to measure the performance of photocatalysts. In the process of photocatalytic degradation of POPs, the catalytic activity is affected by many factors, including the crystal structure of the catalyst, surface properties, light conditions, etc. Schottky barrier is a concept that describes the energy barrier during electron transmission at the interface between metal and semiconductor. By regulating the height and width of the Schottky barrier, the separation and transmission efficiency of photogenerated electrons and holes can be optimized, thereby improving the catalytic activity of the photocatalyst.
为了提高光催化剂的催化活性,研究者们采用了多种方法。例如,通过引入缺陷、掺杂其他元素或构建异质结等方式,可以调控催化剂的能带结构和表面性质,降低肖特基势垒,从而提高光催化效率。
In order to improve the catalytic activity of photocatalysts, researchers have adopted a variety of methods. For example, by introducing defects, doping other elements, or constructing heterojunctions, the band structure and surface properties of the catalyst can be adjusted, the Schottky barrier can be reduced, and the photocatalytic efficiency can be improved.
罗丹明B(RhB)作为一种典型的POPs,常被用作光催化降解实验的目标污染物。通过对比不同光催化剂对RhB的降解效果,可以评估催化剂的性能优劣。在实验中,抗坏血酸还原剂的应用可以有效地促进光生电子的传输和分离,提高光催化效率。
Rhodamine B (RhB), as a typical POPs, is often used as the target pollutant in photocatalytic degradation experiments. By comparing the degradation effects of different photocatalysts on RhB, the performance of the catalyst can be evaluated. In experiments, the application of ascorbic acid reducing agent can effectively promote the transmission and separation of photogenerated electrons and improve photocatalytic efficiency.
此外,抗坏血酸还原剂还可以作为光催化过程中的电子供体,与光生空穴发生反应,从而抑制催化剂的光腐蚀现象,延长催化剂的使用寿命。通过优化抗坏血酸还原剂的浓度和添加方式,可以进一步提高光催化降解POPs的效率和稳定性。
In addition, ascorbic acid reducing agent can also be used as an electron donor in the photocatalytic process, reacting with photogenerated holes, thereby inhibiting the photocorrosion phenomenon of the catalyst and extending the service life of the catalyst. By optimizing the concentration and addition method of ascorbic acid reducing agent, the efficiency and stability of photocatalytic degradation of POPs can be further improved.
配体交换是一种调控催化剂表面性质的有效方法。通过替换催化剂表面的配体,可以改变其吸附性能和催化活性。在光催化降解POPs的过程中,配体交换可以提高催化剂对污染物的吸附能力,加速降解反应的进行。
Ligand exchange is an effective method to control the surface properties of catalysts. By replacing the ligands on the catalyst surface, its adsorption properties and catalytic activity can be changed. In the process of photocatalytic degradation of POPs, ligand exchange can improve the adsorption capacity of the catalyst for pollutants and accelerate the degradation reaction.
同时,配体交换还可以增强催化剂的光催化稳定性。通过选择合适的配体,可以优化催化剂的表面结构,减少光腐蚀现象的发生。此外,配体交换还可以引入新的活性位点,提高催化剂的催化活性和选择性。
At the same time, ligand exchange can also enhance the photocatalytic stability of the catalyst. By selecting appropriate ligands, the surface structure of the catalyst can be optimized and the occurrence of photocorrosion phenomena can be reduced. In addition, ligand exchange can also introduce new active sites and improve the catalytic activity and selectivity of the catalyst.
催化剂的循环利用是实现光催化技术可持续发展的关键。通过合理的回收和再生处理,可以使催化剂保持较高的光催化活性。
Catalyst recycling is the key to achieving sustainable development of photocatalytic technology. Through reasonable recovery and regeneration treatment, the catalyst can maintain high photocatalytic activity.
案例介绍:
光催化反应器应用案例:可见光降解POPs
Application case of built-in photocatalytic reactor: methylene blue photocatalytic degradation
图 1光催化降解装置示意图
1-盖子;2-排气口;3-玻璃外置;4-玻璃内罩;5-灯管;6-进水口;7-出水口;8-灯管更换旋钮;9-超声发生器;10-曝气头;11-气体流量计;12-通气泵:13-电热丝:14-磁力搅拌装置:15-温度传感器16-出水口阀门:17-pH 计阀门;18-pH 计探头;19-可更换滤膜的滤头;20-紫外检测阀门;21-比色皿
Figure 1 Schematic diagram of photocatalytic degradation device
1. Cover; 2- Exhaust port; 3- Glass external; 4-Glass inner cover; 5- Lamp tube; 6- Water inlet; 7- Water outlet; 8- Lamp tube replacement knob; 9- Ultrasonic generator; 10- Aeration head; 11- Gas flow meter; 12- Ventilation pump: 13- Electric heating wire: 14- Magnetic stirring device: 15- Temperature sensor: 16- Water outlet valve: 17- pH meter valve
将光纳米反应器和RhB稀释液加到反应瓶中,然后将反应瓶连接冷凝水管,磁力搅拌并对准氙灯进行照射,每隔一定时间从反应瓶中取样,离心,吸出上层清液,用紫外可见分光光度计测其吸光度。
Add the light nanoreactor and RhB diluent to the reaction bottle, then connect the reaction bottle to the condensate pipe, stir with magnetic force and aim at the xenon lamp for irradiation. Take samples from the reaction bottle at regular intervals, centrifuge, and suck out the upper clear liquid. Measure its absorbance using a UV visible spectrophotometer.
江苏航烨能源科技有限公司为您定制光催化反应釜、光催化降解装置,欢迎前来咨询。您的的意见是我们航烨人不断地前进动力!
Jiangsu Hangye Energy Technology Co., Ltd. customizes photocatalytic reaction vessels and photocatalytic fluidized bed reactors for you. Welcome to inquire.
咨询热线:
反应器事业部
13656137792(微信同号)
微通道事业部
15358595878(微信同号)
Q Q: 443294490
邮 箱:443294490@qq.com
地 点:江苏省泰兴市学院路36号
咨询热线:
地 点:江苏省泰兴市学院路36号(制造基地)
江苏省镇江市塔山路2号 (研发销售中心)
江苏省南京市鼓楼区古平岗4号A座218室 (售后服务)
电 话:反应器事业部
13656137792(微信同号)
15896350109(微信同号)
换热器事业部
15358595878(微信同号)
邮 箱:443294490@qq.com
多年积累 品质可靠
微信
淘宝店
江苏航烨能源科技有限公司
江苏航烨能源装备有限公司